NRC 22643 # INFRARED AND FAR-INFRARED TRANSITION FREQUENCIES FOR THE CH2 RADICAL1 TREVOR J. SEARS, A. R. W. MCKELLAR, AND P. R. BUNKER Herzberg Institute of Astrophysics, National Research Council of Canada > K. M. EVENSON National Bureau of Standards #### AND ### J. M. Brown Department of Chemistry, Southampton University Received 1983 May 13: accepted 1983 June 14 # **ABSTRACT** Frequencies, wavelengths, and line strengths for transitions of the CH₂ molecule at far-infrared and midinfrared (9-12 μ m) wavelengths have been calculated from recently reported laser magnetic resonance spectra. Subject headings: infrared: spectra — interstellar: molecules — laboratory spectra — line identifications transition probabilities Methylene, CH₂, is a very likely constituent of interstellar gas clouds where many other such reactive species have been detected. It has not been detected in astronomical sources, principally because, until recently, precise spectroscopic measurements for the triplet ground electronic state did not exist. Also, most of the transitions likely to occur in astronomical sources are in the relatively unexplored midand far-infrared wavelength regions. This paper presents a list of frequencies and intensities for transitions of CH₂ in the midand far-infrared regions which should aid in its detection and thus provide valuable information on the local physical and chemical environment. In the case of dark molecular clouds, recent astrochemical calculations (Prasad and Huntress 1980; Inglesias 1977) have predicted CH_2 abundances of the same order of magnitude as those of CH . These models predict that the primary formation mechanism for both CH_2 and CH is via dissociative recombination of CH_3^+ and an electron $$CH_3^+ + e < CH_2 + H$$ $CH + 2H$. (1) Measurements of CH₂ abundances will therefore lead to an estimate of the branching ratio for reaction (1) since the primary loss mechanism for both CH₂ and CH is thought to be the reaction with oxygen atoms. The paucity of laboratory data on CH₂ in its ³B₁ ground electronic state has recently been changed by the observation of vibrational spectra in the infrared (Sears, Bunker, and McKellar 1981, 1982) and rotational spectra in the far-infrared (Sears et al. 1982) regions by laser magnetic resonance (LMR) spectroscopy. Subsequently, one lower frequency rotational transition has been detected around 70 GHz by conventional microwave techniques (Lovas, Suenram, and Evenson 1983). In the LMR experiments the molecular transition frequency is tuned into coincidence with a fixed frequency laser by means of a variable magnetic field. Although the zero field frequencies are not measured directly in LMR, the data are of high quality and the theory of the Zeeman effect is sufficiently well understood (Sears et al. 1982) that the extrapolation to zero field can be performed reliably. Table 1 lists the lowest few rotational energy levels of CH₂ in its ground electronic state. The asymmetric top energy levels, denoted by $N_{K_aK_c}$, are split into levels with J = N - 1, N, and N + 1 by fine structure interactions. Half the levels (those $\begin{tabular}{ll} TABLE & 1 \\ Low-Lying Rotational Levels of CH_2 (in GHz) \\ \end{tabular}$ | $N_{K_a K_a}$ | J = N - 1 | | | J = N | | | J = N + 1 | | | |-----------------|-----------|-----------|----------|-----------|----------|-----------|-----------|-----------|-----------| | | F = N - 2 | F = N - 1 | F = N | F = N - 1 | F = N | F = N + 1 | F = N | F = N + 1 | F = N + 2 | | 0,,, | ••• | | | | ••• | | -0.046 | -0.066 | -0.107 | | 101 | | 453.393 | | | 476.590 | ••• | | 466.922 | | | 1,1 | | | 2354.687 | 2344.651 | 2344.631 | 2344.590 | 2348.555 | 2348.538 | 2348.514 | | 1,0 | | 2392.938 | | | 2379.266 | | | 2384.582 | | | 202 | 1397.897 | 1397.927 | 1397.986 | 1413.163 | 1413.169 | 1413.179 | 1402.743 | 1402.712 | 1402.670 | | 2,2 | | 3247.474 | | ••• | 3256.093 | | | 3249.965 | | | 2,, | 3356.025 | 3356.045 | 3356.086 | 3362.257 | 3362.257 | 3362.258 | 3357.651 | 3357.625 | 3357.590 | | 303 | | 2802.552 | | | 2816.133 | | | 2805.139 | | | 3, , | 4601.350 | 4601.379 | 4601.423 | 4612.552 | 4612.555 | 4612.558 | 4603.504 | 4603.474 | 4603.436 | | 3,, | | 4816.668 | | | 4825.628 | | | 4818.069 | | | 4 ₀₄ | 4670.358 | 4670.394 | 4670.442 | 4683.229 | 4683.233 | 4683.238 | 4671.884 | 4671.850 | 4671.808 | Work supported in part by NASA contract W15047. ${\bf TABLE~2}$ Calculated Rotational Transition Frequencies for CH $_2$ ($^3B_1)$ | $N_{K_aK_c}$ | J | F* | Frequency
(GHz) | Vacuum
Wavelength
(µm) | Line
Strength | $N_{K_aK_r}$ | J | F* | Frequency
(GHz) | Vacuum
Wavelength
(μm) | Line
Strength | |--------------|------------|------------|----------------------|------------------------------|------------------|----------------------|------------|------------|---------------------------|---------------------------------|------------------| | | | | 2244 (67 | 127.0/2 | 0.02 | | | 2.2 | 2202.426 | 03.606 | | | 111-000 | 1-1
1-1 | 2~1
1-0 | 2344.657
2344.677 | 127.862 | 0.82 | | 2-1
2-1 | 3-2 | 3203.436
3203.452 | 93.585 | 3.32 | | | 1-1
1-1 | 1-0 | 2344.697 | 127.861 | 0.66 | | 2-1
2-1 | 2-1
1-0 | 3203.452
3203.453 | 93.584 | 1.78 | | | 1-1 | 2-2 | 2344.697 | 127.860
127.860 | 0.51
2.53 | | 3-3 | 1–0
4–4 | 3209.888 | 93.584
93.39 7 | 0.79
0.52 | | | 1-1 | 0-1 | 2344.717 | 127.859 | 0.67 | 220-111 ^b | 2-2 | 3-3 | 5927.012 | 50 .581 | 0.96 | | | 1-1 | 1-2 | 2344.738 | 127.858 | 0.84 | 220-111 | 2-2 | 3-3
2-2 | 5927.012 | 50 .581 | 0.53 | | | 2-1 | i-0 | 2348.601 | 127.647 | 1.12 | | 2-1 | 2-1 | 5930.924 | 50 .547 | 1.71 | | | 2-1 | 2-1 | 2348.605 | 127.647 | 2.52 | | 2-1 | 1-0 | 5930.924 | 50.547 | 0.76 | | | 2-1 | 1-1 | 2348.621 | 127.646 | 0.83 | | 2-1 | 3-2 | 5930.935 | 50.547 | 3.20 | | | 2-1 | 3-2 | 2348.621 | 127.646 | 4.66 | | 2-1 | 1-1 | 5930.944 | 50.547 | 0.58 | | | 2-1 | 2-2 | 2348.645 | 127.645 | 0.81 | | 2-1 | 2-2 | 5930.965 | 50.547 | 0.58 | | | 0-1 | 1-1 | 2354.753 | 127.314 | 0.66 | | 1-0 | 2-1 | 5936.587 | 50.499 | 1.69 | | | 0-1 | 1-2 | 2354.793 | 127.312 | 1.10 | | 1-0 | 1-1 | 5936.606 | 50.499 | 1.01 | | 110-101 | 1-1 | | 1902.677 | 157.564 | 0.73 | | 3-2 | 2-1 | 59 36.939 | 5 0.496 | 2.54 | | | 2-1 | | 1907.992 | 157.125 | 1.23 | | 3-2 | 3-2 | 5936.94 7 | 50.496 | 3.77 | | | 1-2 | | 1912.343 | 156.767 | 1.24 | | 3-2 | 4-3 | 5936.959 | 50.49 6 | 5.44 | | | 0–1 | | 1916.348 | 156.439 | 1.00 | | 1 – I | 2-2 | 5946 .683 | 50.413 | 0.92 | | | 2-2 | ••• | 1917.659 | 156.332 | 3.77 | 221-110 ^b | 2-2 | | 589 0.416 | 5 0.895 | 0.76 | | | 1-0 | • • • | 1925.873 | 155.666 | 1.03 | i | 2-1 | • • • | 5895.732 | 50 .849 | 2.27 | | 212-101 | 1-1 | • • • | 2770.884 | 108.194 | 0.77 | | 1-0 | | 5897.774 | 5 0.831 | 1.00 | | | 2-1 | • • • • | 2779.503 | 107.858 | 2.27 | | 3-2 | • • • | 5900.339 | 50.809 | 4.19 | | | 3-2 | • • • | 2783.043 | 107.721 | 4.20 | | 1-1 | ••• | 5911.447 | 50.714 | 0.73 | | | 2-2 | • • • | 2789.170 | 107.484 | 0.73 | 212-303 | 2-3 | • • • | 439.960 | 6 81. 4 09 | 1.68 | | | 1-0 | | 2794.080 | 107.296 | 0.97 | | 3-4 | • • • | 444.826 | 673.955 | 2.44 | | 111-202 | 1-2 | 2-3 | 931.412 | 321.869 | 0.99 | | 1-2 | ••• | 444.922 | 673.810 | 1.14 | | | 1-2 | 1-2 | 931.462 | 321.852 | 0.53 | 312-303 | 2-3 | • • • | 2000.535 | 149.856 | 0.58 | | | 2-3 | 1-2 | 945.812 | 316.968 | 0.82 | | 4-3 | ••• | 2001.936 | 149.751 | 0.57 | | | 2-3 | 2-3 | 945.827 | 316.963 | 1.21 | | 3-3 | • • • • | 2009.495 | 149.188 | 6.03 | | | 2-3 | 3-4 | 945.844 | 316.958 | 1.76 | | 4-4 | • • • | 2012.929 | 148.933 | 8.66 | | 311 303 | 0-1 | 1-2 | 956.700 | 313.361 | 0.55 | | 2-2 | • • • • | 2014.116 | 148.846 | 4.55 | | 211-202 | 1-2 | 1-2 | 1942.875 | 154.303 | 0.58 | | 3-4 | ••• | 2020.488 | 148.376 | 0.57 | | | 1-2
3-2 | 2-3
4-3 | 1942.906 | 154.301 | 1.09 | 414-303b | 3-2
4-3 | • • • | 2023.076 | 148.186 | 0.58 | | | 3-2 | 3-2 | 1944.411
1944.455 | 154.182 | 1.00 | 414~303 | 4-3
5-4 | ••• | 3601.793
3602.208 | 83.234 | 4.62
6.02 | | | 3-2
2-2 | 3-2
2-3 | 1949.078 | 154.178
153.812 | 0.69
0.54 | | 3-4
3-2 | ••• | 3602.298
3603.534 | 83.223
83.194 | 3.51 | | | 2-2 | 3-3 | 1949.079 | 153.812 | 4.37 | 321-212 ^b | 3-2 | ••• | 6443.446 | 46.527 | 3.07 | | | 2-2 | 2-2 | 1949.088 | 153.812 | 2.44 | 321-212 | 4-3 | • • • • | 6449.224 | 46.485 | 4.41 | | | 2-2 | 3-2 | 1949.088 | 153.812 | 0.54 | | 2-1 | | 6452.472 | 46.462 | 2.05 | | | 2-2 | 1-2 | 1949.088 | 153,812 | 0.52 | 220-211 ^b | 2-2 | 3-3 | 4913.268 | 61.017 | 1.37 | | | 2-2 | 2-1 | 1949.094 | 153.811 | 0.52 | 220 211 | 2-2 | 2-2 | 4913.298 | 61.017 | 0.77 | | | 2-2 | 1-1 | 1949.094 | 153.811 | 1.58 | | 3-3 | 2-2 | 4927.843 | 60.836 | 1.28 | | | 3-3 | 4-3 | 1954.879 | 153.356 | 0.51 | | 3-3 | 3-3 | 4927.860 | 60.836 | 1.69 | | | 3-3 | 3-2 | 1954.882 | 153.356 | 0.50 | | 3-3 | 4-4 | 4927.883 | 60.836 | 2.43 | | | 3-3 | 2-2 | 1954.908 | 153.354 | 4.00 | | 1-1 | 2-2 | 4935.188 | 60.746 | 0.93 | | | 3-3 | 3-3 | 1954.913 | 153.353 | 5.29 | 404 -313° | 5-4 | 6-5 | 68.371 | 4384.740 | 4.00 | | | 3-3 | 4-4 | 1954 .921 | 153.353 | 7.59 | | 5-4 | 5-4 | 68.375 | 4384.486 | 3.25 | | | 3–3 | 2-3 | 1954.940 | 153.351 | 0.50 | | 5-4 | 4-3 | 68.380 | 4384.194 | 2.64 | | | 3-3 | 3-4 | 1954.955 | 153.350 | 0.51 | | 3-2 | 2-1 | 69.008 | 4344.337 | 1.19 | | | 1-1 | 1-2 | 195 8.059 | 153.107 | 0.94 | | 3-2 | 3-2 | 69 .015 | 4343.881 | 1.76 | | | 1-1 | 0-1 | 1958.09 8 | 153.104 | 0.75 | | 3-2 | 4-3 | 69 .020 | 4343.577 | 2.54 | | | 1-1 | 2-2 | 1958.099 | 153.104 | 2.81 | | 4-3 | 3-2 | 7 0.677 | 4241.724 | 1.85 | | | 1-1 | 1-1 | 1958.118 | 153.102 | 0.56 | | 4-3 | 4-3 | 70.679 | 4241.634 | 2.43 | | | 1-1 | 1-0 | 1958.148 | 153.100 | 0.75 | | 4-3 | 5-4 | 70.68 0 | 4241.535 | 3.17 | | | 1-1 | 2-1 | 195 8.159 | 153.099 | 0.95 | 220-313 ^b | 3-4 | 4-5 | 3682.037 | 81.420 | 0.53 | | | 2-3 | 2-3 | 1959.545 | 152. 9 91 | 0.69 | 322-313 ^b | 3-3 | 4–4 | 5084.229 | 5 8. 9 65 | 2.99 | | | 2-3 | 3-4 | 1959.588 | 152.987 | 0.99 | | 3-3 | 3-3 | 5084.236 | 58.965 | 2.05 | | | 2-1 | 3-2 | 1964.271 | 152.623 | 1.08 | | 3-3 | 2-2 | 5084.243 | 58.965 | 1.54 | | 112 202h | 2-1 | 2-1 | 1964.330 | 152.618 | 0.58 | | 4-4 | 3-3 | 5092.926 | 58.864 | 2.57 | | 313-2026 | 2-2 | 3-3 | 3188.244 | 94.031 | 0.56 | | 4-4 | 4-4 | 5092.935 | 58.864 | 3.18 | | | 3-2 | 4-3 | 3199.379 | 93.703 | 4.56 | | 4-4 | 5-5 | 509 2. 94 8 | 58.864 | 4.17 | | | 3-2 | 3-2 | 3199.385 | 93.703 | 3.16 | | 2-2 | 3-3 | 5095.736 | 58.832 | 2.35 | | | 3-2 | 2-1 | 3199.389 | 93.703 | 2.13 | | 2-2 | 2~2 | 5095.760 | 58.832 | 1.32 | | | 4-3 | 3-2 | 3200.761 | 93.66 3 | 3.65 | 412 404 | 2-2 | 1-1 | 5095.774 | 58.832 | 0.84 | | | 4-3 | 4-3 | 3200.763 | 93.663 | 4.79 | 413–404 | 3-4 | 4-5 | 2079.944 | 144.135 | 0.57 | | | 4-3 | 5-4 | 3200.767
3203.303 | 93.663 | 6.25 | | 5-4 | 6–5 | 2080.667 | 144.085 | 0.54 | | | 2-1 | 2-2 | 320 3.392 | 9 3.586 | 0.60 | | 4-4 | 5-5 | 2089.641 | 143.466 | 9.97 | | | 2-1 | 1-1 | 3203.423 | 93.585 | 0.59 | | 4-4 | 4-4 | 2089.642 | 143.466 | 7.67 | TABLE 2-Continued | | | - | Vacuum
Erropera Waydongth Line | | | | | | |----------------------|-----|-----|-----------------------------------|--------------------|------------------|--|--|--| | N _{KeKe} . | J | F* | Frequency
(GHz) | Wavelength
(μm) | Line
Strength | | | | | | 5-5 | 4-4 | 2092.092 | 143.298 | 8.68 | | | | | | 5-5 | 5-5 | 2092.094 | 143.298 | 10.33 | | | | | | 5-5 | 6–6 | 2092.096 | 143.298 | 12.70 | | | | | | 3-3 | 3-4 | 2092.695 | 143.257 | 0.55 | | | | | | 3-3 | 2-3 | 2092.710 | 143.256 | 0.55 | | | | | | 3-3 | 4-4 | 2092.740 | 143.254 | 8.27 | | | | | | 3-3 | 3-3 | 2092.744 | 143.253 | 5.76 | | | | | | 3-3 | 3-2 | 2092.780 | 143.251 | 0.55 | | | | | | 3-3 | 4-3 | 209 2.788 | 143.250 | 0.55 | | | | | | 4-5 | 5-6 | 2101.070 | 142.686 | 0.54 | | | | | | 4–3 | 5-4 | 2102.436 | 142.593 | 0.57 | | | | | 515-404 ^b | 5-4 | 6-5 | 39 88.597 | 75.162 | 6.60 | | | | | | 5-4 | 5-4 | 39 88.599 | 75.162 | 5.36 | | | | | | 5-4 | 4-3 | 3988.600 | 75.162 | 4.35 | | | | | | 6-5 | 5-4 | 3988.664 | 75.161 | 5.62 | | | | | | 6-5 | 6-5 | 3988.665 | 75.161 | 6.68 | | | | | | 6-5 | 7-6 | 398 8.667 | 75.161 | 7.93 | | | | | | 4-3 | 5-4 | 3989.390 | 75.147 | 5.52 | | | | | | 4-3 | 4-3 | 3989.395 | 75.147 | 4.23 | | | | | | 4–3 | 3-2 | 3989.396 | 75.147 | 3.23 | | | | ^{*} Where F is not given, the transition involves para-CH₂ levels with I=0 and no hyperfine structure. ^b Transition not directly observed in the LMR spectrum. with $K_a + K_c =$ an even number) are further split into levels with F = J - 1, J, and J + 1 by hyperfine structure interactions involving the two ¹H nuclei. The energies were calculated using the parameters of Sears *et al.* (1982), and all levels below 200 cm⁻¹ (300 K) are included. Table 2 lists all the transitions of significant intensity that occur among the levels of Table 1, and also some of the stronger high-frequency transitions from these levels to higher lying levels. Transitions are arranged in order of increasing energy of the lower state, beginning with 0_{00} . The calculated transition strengths are defined by $$S_{F'F''} = \left| \langle \gamma' F' \| D_{\cdot \mathbf{q}}^{(1)}(\omega)^* \| \gamma'' F'' \rangle \right|^2, \qquad (2)$$ where $S_{F'F''}$ is the square of the reduced matrix element of the rotation matrix (Brink and Satchler 1968), and γ represents the additional quantum numbers needed to define a level $(N, K_a, K_c, \text{ and } J)$. The absorption coefficient for a given transition is the product of $S_{F'F''}$ and the transition frequency, the population difference of the two levels, the molecular column density, and the square of the dipole moment. Although the dipole moment of CH_2 has not been measured, the ab initio value of $\mu = 0.57$ Debye (Bunker and Langhoff 1983) is thought to be rather accurate. Einstein A coefficients for spontaneous emission can also be calculated from S by means of $$A_{i \to j} = (16\pi^3 v_{ij}^3 / 3\epsilon_0 hc^3)(2F_i + 1)^{-1} S_{ij} \mu^2 . \tag{3}$$ The v_2 (bending) fundamental band of CH₂ occurs in the 10 μ m region and has been studied by means of LMR spectroscopy with a CO₂ laser (Sears, Bunker, and McKellar 1981, 1982). The v_1 and v_3 stretching bands are much weaker than v_2 (Bunker and Langhoff 1983) and have not yet been observed. They are expected to occur in the 3.3 μ m region (Bunker and Jensen 1983). Since it is possible that CH_2 could be detected in astronomical sources using CO_2 laser heterodyne receivers (Betz 1982) or other sensitive infrared techniques, we present in Table 3 a list of v_2 band transition frequencies and intensities. Here we have suppressed the hyperfine splittings, since they are certain to be masked by Doppler broadening at these wavelengths. As we have noted previously (Sears, Bunker, and McKellar 1982) the large geometry changes associated with the v_2 vibration in CH_2 give rise to K_a -dependent intensity factors in the v_2 band. The appropriate calculated dipole matrix elements (Bunker and Langhoff 1983) for the v_2 band are: 0.096 debye for $K_a = 0 \leftarrow 1$ transitions, and 0.042 debye for $K_a = 1 \leftarrow 0$ transitions. The transition frequencies given here that correspond to observed LMR transitions should be reliable to better than ± 5 MHz for Table 2 and ± 0.0007 cm⁻¹ for Table 3. Uncertainties for other transitions are somewhat difficult to assess because CH₂ is not especially well fitted by the conventional rotation-vibration Hamiltonian due to its large-amplitude anharmonic bending motion (see Sears, Bunker, and McKellar 1982 and Sears et al. 1982). We estimate that the transitions not observed by LMR have an uncertainty of about 10-20 MHz for Table 2 and about 0.003 cm⁻¹ for Table 3. In all cases, however, the relative spacings of the fine and hyperfine components of a given transition are considerably more reliable than this, and they provide distinctive spectral signatures for CH₂. TABLE 3 CALCULATED TRANSITION FREQUENCIES FOR THE v_2 BAND OF CH₂ (3B_1) | $N_{K_{\sigma}K_{\epsilon}}$ | J | Wavenumber (cm ⁻¹) | Vacuum
Wavelength
(μm) | Line
Strength | |------------------------------|-----|--------------------------------|------------------------------|------------------| | 202-313° | 3-3 | 855.5017 | 11.689 | 1.30 | | | 1-2 | 855.7121 | 11.686 | 7.14 | | | 3-4 | 855.8048 | 11.685 | 15.38 | | | 2-3 | 855.8582 | 11.684 | 10.67 | | | 2-2 | 856.2306 | 11.679 | 1.36 | | 101-212 ^a | 0-1 | 869.7078 | 11.498 | 0.97 | | | 2-2 | 869.8817 | 11.496 | 0.73 | | | 2-3 | 870.0861 | 11.493 | 4.20 | | | 1-2 | 870.2112 | 11.491 | 2.27 | | | 1-1 | 870.49 87 | 11.488 | 0.77 | | 000-111 | 1-0 | 884.5517 | 11.305 | 1.98 | | | 1-2 | 884.7570 | 11.303 | 9.99 | | | 1-1 | 884.8878 | 11.301 | 6.03 | | 404-413 | 3-4 | 891.3374 | 11.219 | 1.36 | | | 5-4 | 891.3866 | 11.218 | 1.34 | | | 3-3 | 891.6619 | 11.215 | 20.20 | | | 5-5 | 891.6848 | 11.215 | 32.54 | | | 4-4 | 891.7736 | 11.214 | 25.01 | | | 4-5 | 892.0717 | 11.210 | 1.34 | | | 4-3 | 892.0980 | 11.210 | 1.36 | | 303-312 | 2-3 | 894.5923 | 11.178 | 0.57 | | | 4-3 | 894.6807 | 11.177 | 0.56 | | | 2-2 | 894.8911 | 11.175 | 4.50 | | | 4-4 | 894.9328 | 11.174 | 8.57 | | | 3-3 | 895.0546 | 11.173 | 5.97 | | | 3-4 | 895.3068 | 11.169 | 0.56 | | | 3-2 | 895.3535 | 11.169 | 0.57 | | 202-211 | 1-2 | 897.0452 | 11.148 | 2.31 | | | 3-2 | 897.2071 | 11.146 | 2.31 | | | 1-1 | 897.2518 | 11.145 | 6.74 | | | 3-3 | 897.3619 | 11.144 | 18.81 | | | 2-2 | 897.5637 | 11.141 | 10.47 | Note that this transition has been directly measured to high accuracy at zero field by Lovas, Suenram, and Evenson 1983. TABLE 3-Continued | $N_{K_{\bullet}K_{\epsilon}}$ | J | Wavenumber (cm ⁻¹) | Vacuum
Wavelength
(μm) | Line
Strength | $N_{K_{\bullet}K_{\epsilon}}$ | J | Wavenumber (cm ⁻¹) | Vacuum Wavelength (μm) | Line
Strength | |-------------------------------|-----|--------------------------------|------------------------------|------------------|-------------------------------|-----|--------------------------------|-----------------------------|------------------| | | 2-3 | 897.7185 | 11.139 | 2.32 | | 2-2 | 1084.9024 | 9.217 | 0.70 | | | 2-1 | 897.7702 | 11.139 | 2.32 | 1 | 2-3 | 1085.2517 | 9.214 | 4.10 | | 101–110 | 0-1 | 89 8.6681 | 11.128 | 1.03 | | 1-1 | 1085.2705 | 9.214 | 0.75 | | | 2-2 | 898.9522 | 11.124 | 3.77 | | 0-1 | 1085.6208 | 9.211 | 0.99 | | | 1-0 | 899.0030 | 11.123 | 1.00 | 110-101* | 1-1 | 1117.2373 | 8.951 | 0.73 | | | 2-1 | 899.1295 | 11.122 | 1.24 | 1 | 2-1 | 1117.4190 | 8.949 | 1.23 | | | 1-2 | 899.281 7 | 11.120 | 1.23 | | 1-2 | 1117.5597 | 8.948 | 1.24 | | | 1-1 | 899.459 0 | 11.118 | 0.73 | ł | 0-1 | 1117.6937 | 8.947 | 1.00 | | 202-111 | 1-0 | 930.6542 | 10.745 | 1.00 | 1 | 2~2 | 1117.7415 | 8.947 | 3.77 | | | 1-1 | 930.9903 | 10.741 | 0.76 | | 1-0 | 1118.0110 | 8.944 | 1.03 | | | 3-2 | 931.0214 | 10.741 | 4.16 | 211-202* | 1-2 | 1118.5226 | 8.940 | 2.33 | | | 2-2 | 931.3780 | 10.737 | 0.71 | | 3-2 | 1118.5815 | 8.940 | 2.32 | | | 2-1 | 931.5087 | 10.735 | 2.16 | | 2-2 | 1118.7407 | 8.939 | 10.51 | | 303-212 | 2-1 | 947.2338 | 10.557 | 1.17 | | 3-3 | 1118.9307 | 8.937 | 18.89 | | | 4-3 | 947.2391 | 10.557 | 2.50 | | 1-1 | 1119.0301 | 8.936 | 6.77 | | | 3-2 | 947.4087 | 10.555 | 1.72 | ł | 2-3 | 1119.0900 | 8.936 | 2.32 | | 212-303ª | 2-3 | 1068.1776 | 9.362 | 1.68 | 1 | 2-1 | 1119.2483 | 8.935 | 2.32 | | | 3-4 | 1068.3398 | 9.360 | 2.45 | 111-000° | 1-1 | 1131.9042 | 8.835 | 6.03 | | | 1-2 | 1068.3415 | 9.360 | 1.14 | | 2-1 | 1132.0437 | 8.834 | 9.99 | | 111-202 | 1-2 | 1084.7630 | 9.219 | 2.13 | | 0-1 | 1132.2545 | 8.832 | 1.98 | ^{*} Transition not directly observed in the LMR spectrum. # REFERENCES Betz, A. L. 1982, in Laser Spectroscopy V, ed. A. R. W. McKellar, T. Oka, and B. P. Stoicheff (New York: Springer-Verlag), p. 81. Brink, D. M., and Satchler, G. R. 1968, Angular Momentum (Oxford: Oxford University Press). Bunker, P. R., and Jensen. P. 1983, J. Chem. Phys., 79, 1224. Bunker, P. R., and Langhoff, S. R. 1983, J. Molec. Spectrosc., to be published. Inglesias, E. 1977, Ap. J., 218, 697. Lovas, F. J., Suenram, R. D., and Evenson, K. 1983, Ap. J. (Letters), 267, L131. Prasad, S. S., and Huntress, W. J. 1980, Ap. J., 239, 151. Sears, T. J., Bunker, P. R., and McKellar, A. R. W. 1981, J. Chem. Phys., 75, 4731. 5. 1982, J. Chem. Phys., 77, 5363. Sears, T. J., Bunker, P. R., McKellar, A. R. W., Evenson, K. M., Jennings, D. A., and Brown, J. M. 1982, J. Chem. Phys., 77, 5348. - J. M. Brown: Department of Chemistry, Southampton University, Southampton, S09 5NH, England, U.K. - P. R. BUNKER, A. R. W. McKellar, and Trevor J. Sears: Herzberg Institute of Astrophysics, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada - K. M. Evenson: National Bureau of Standards, Boulder, CO 80303